学术报告

New Monge-Ampere type PDEs and canonical metrics on Hopf surfaces

题目:New Monge-Ampere type PDEs and canonical metrics on Hopf surfaces

报告人:方浩(美国爱荷华大学)

摘要:We report some recent joint work with Josh Jordan in Hermitian geometry. Hopf surfaces and Inoue surfaces of type M are important type VII examples in the Kodaira classification theory that are not Kahler. We study the corresponding canonical metric problem exploring a particular geometric feature which is called split tangent. Following works of Streets-Tian, Streets-Ustinovskiy and others, we study the Bismut-Ricci of bi-Hermitian metrics on surfaces with split tangent. As applications, we establish a uniformization theorem for diagonal Hopf surfaces. By introducing a new fully non-linear PDE of split type, we also establish new  canonical metrics of Calabi-Yau type. We shall also discuss the Inoue surface and possible future works.

报告人简介:方浩,美国爱荷华大学数学系教授。本科毕业于南开大学,博士毕业于美国普林斯顿大学。研究领域包括几何分析、数学物理、代数几何等。

报告时间:2024年8月1日(周四)10:00-11:00

报告地点:教二楼613

联系人:许明

屏幕截图(112).png